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Determination of a charged-particle-bunch shape from the coherent far infrared spectrum
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Since perturbed relativistic charged particle bunches of millimeter or submillimeter size emit coherently in
the far infrared frequency region, there is growing interest in using this spectrum to obtain precise information
about the bunch form factor. It is described here how the maximal information, including bunch asymmetry,

can be extracted from such measurements.
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The realization that the energy spread of an appropriately
tailored charge distribution can be readily compressed [1]
has brought attention to the experimental problem of mea-
suring the shape of single bunches on a subpicosecond time
scale. Although it has been recognized for some time that
coherent radiation with wavelength comparable to or larger
than the bunch length would be generated in synchrotron
orbits [2—6], it was not until the successful measurements of
Nakazato and others [7—11] that the bunch form factor, i.e.,
the modulus squared of the Fourier transform of the charge
distribution, was obtained from the far infrared spectrum.
Another advance was the identification and separation of co-
herent transition radiation [12—14] from which the same
bunch information can be obtained. In either case the bunch
shape has been calculated from the spectrum by a cosine
Fourier transform so that only a symmetric shape can result.
In this paper we demonstrate how additional phase informa-
tion can be recovered from a coherent far infrared spectrum
so that detailed bunch properties, such as its asymmetry, can
be identified.

To estimate both the incoherent and coherent intensity
contributions to the synchrotron radiation spectrum from a
bunch, one sums up over the N electrons the total electric
field at frequency o to obtain the total intensity at the detec-
tor [3]:

I(@)=I(w)[N+N(N—-1)F(w)], (1

where F(w) is the form factor. The first contribution in Eq.
(1) is the intensity of the N independent sources while the
second coherent part takes into account the phase relations
between the different charged particles. For relativistic
charged particles the radiation appears in the forward direc-
tion and, for this limit, the form factor simplifies to

2

F(w)= ‘ f:dz S(z)el(w/o): 2)

where S(z) is the normalized longitudinal distribution func-
tion of charged particles in the bunch. Thus a measurement
of the coherent emission spectrum gives the longitudinal
bunch form factor F(w) and hence provides information
about the longitudinal bunch distribution function S(z)
through the transform expression [10]:

1063-651X/94/50(5)/3342(3)/$06.00 50

1 o
S(z)= ;(,'-fo dw\/F(w)cos(%). 3)

Note that because this is a cosine transform any information
about the bunch asymmetry does not appear in S(z). Further-
more, even for a symmetric bunch, this expression does not
produce a unique bunch shape. Equation (3) indicates that
the maximum value always occurs at the center; however, if
the bunch consists of two symmetrically placed peaks this
bunch distribution function should necessarily have a mini-
mum at the center. The reason for this ambiguity is that the
phase information is missing.

To obtain the maximal information about the bunch shape
from the measured spectral data, we propose the following
analytical method. Define

S(w)= f “dz S(z)e! @2 =p(w)e' @), 4)
0

where § (w) is the complex form factor amplitude so that the
form factor

F(0)=8(0)$*(0)=p*(w). (5)

A measurement of F(w) over the entire frequency interval
gives directly the magnitude of the form factor amplitude,
p(w).

According to Eq. (1) the E field for the coherent part of
the emission spectrum can be written as

Etot( )

JN(N=-1)

so that the effective E field at the detector is linearly related
by S(w) to the E field produced by an individual particle.
The integration in Eq. (4) is only over positive z since the
effective E field cannot reach the detector before that of the
first particle located at z=0, a consequence of causality. It
follows that S(w) can be analytically continued into the up-
per half complex plane by virtue of the factor
exp[—z Im(&/c)], where z and Im(&/c) are positive.
Since any one of the charged particles along the longitu-
dinal z axis in the bunch could have been used as the origin
reference point, the effective E field at the detector would
then precede the single particle one. A translation of the ori-

=E 4 0)=5(0)E(w), (6)
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gin by d can always be used to remove this possibility since
it only introduces an additional phase factor e’(“/) in the
form factor amplitude in Eq. (4) and a phase term linear in
frequency does not contribute to the bunch shape. Hence we
can set d =0 without loss of generality. Next, we assume that
if S(w) has a zero at a finite frequency, say w,, then it goes
to zero no faster than a power law (w—w;)® and that as
|&|—o, S(&) also decays with a power law in frequency.
These assumptions are sufficient so that Kramers-Kronig re-
lations can be applied to S(®). Note the formal similarity
between Eq. (4), which involves an integral over space, and
the corresponding expression for the complex degree of co-
herence, which involves an integral of similar form over
positive frequencies [15], or with the input-output response
function analysis used in optics to obtain the complex reflec-
tivity at an interface, which involves an integral of similar
form over positive time [16].
In analogy with these earlier analyses, we write

1In$ () =Inp(w) +iY(w). )

The real and imaginary parts expressed in Eq. (7) are related
by a Kramers-Kronig relation so that if F(w), hence p(w),
are given at all frequencies then [16]

wor-- 22 [“ax Wlp()/p@)] o

X" —w

With the aid of Eq. (8), the frequency-dependent phase
Y(w) can be found to complete the determination of the
frequency dependence of the complex form factor amplitude
given in Eq. (4). The normalized bunch distribution function
can now be obtained from the inverse Fourier transform of
Eq. (4), namely,

1 ©
S(z)= ;fo dw p(w)cos{ W w)— sz] ©)

This complete expression should be contrasted with Eq. (3).
The details about the bunch asymmetry are contained in the
frequency-dependent phase factor ¥(w) in Eq. (9) with the
realization that only the phase component nonlinear in w
provides additional information.

There is one remaining ambiguity in the solution for the
bunch shape which should be mentioned. Because
F(w)=|S(w)|?, both the particle bunch form factor ampli-
tude and its complex conjugate give the same form factor.
According to Eq. (4) a specific particle bunch of finite length
o, where $(2<0)=S5(z>0,)=0 gives S(w) while the same
particle bunch flipped front to back, i.e., S{(z)=S(o,—2),
gives Sy w). Replacing z by (o,—z) in Eq. (4) gives the
necessary connection between the two, namely,

SHw)=5*(w)e @), (10)

Hence we cannot distinguish the particle bunch shape from
the one flipped front to back. The frequency-dependent phase
Y(w) that is obtained from Eq. (8) corresponds to one of the
bunch shapes; the other would be found from
[- ¥(w)+ wa,/c]. Watching the change in the asymmetry
as a function of the accelerator parameters would be required
to distinguish between these two possibilities.
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FIG. 1. Schematic view of the axially symmetric bunch with
respect to the far ir detector at angle 8. The origin of the coordinate
system is located at the front of the bunch. The distance from the
source to the detector is much larger than the extent of the bunch.
The quantity measured by the far ir spectrum at an angle 6 is the
projection of the bunch along the z’ axis.

Since the experimentally measured spectrum cannot cover
the entire frequency interval, asymptotic forms for F(w)
may be needed in both the low and high frequency regions in
order to apply this Kramers-Kronig approach to the data.
Because S(z) is necessarily real S( w)= S*(w) hence
p(w) is an even function of w, and the Taylor’s expansion of
p(w) and F(w) at low frequencies must both be parabolic
functions. Because the bunch is confined to a finite interval
S(0)=S(o0,)=0, the expansion of Eq. (4) at high frequen-
cies gives the asymptotic limit F(w)~(wy/w)*, where
wy=c/o,.

So far we have focused our attention on a bunch analysis
technique whereby the complete longitudinal bunch shape
can be obtained from the measured far ir spectrum in the
longitudinal direction. However, because of diffraction and
formation length features, the far infrared radiation is spread
over a much larger angle than the 6~ 1/ usually associated
with radiation from strongly relativistic bunches.

Suppose a measurement of the coherent spectrum is made
for radiation at an angle 6 with respect to the particle beam
axis as shown in Fig. 1. Here we assume an axial symmetric
bunch so that S(z") does not depend on the azimuthal angle
@, then

So(w)= J dr S(r)e'(“/omr

=fdz’{fdriS(r’)

where r| is perpendicular to the z’ axis so that

ei(m/c)z" (11)

So(w)= f dz'S (z")e! @’ (12)

and

Se(z")= f dr|S(r'). a3)

This “longitudinal” distribution function defined by Eq. (13)
is now along the z’ axis where the plane perpendicular to the
z' axis is defined by the equation z’=x sinf+z cosé. For
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any angle 6, the analysis described earlier goes through as
before so that the projection of the bunch along the z' axis is
the quantity determined from the far ir spectrum. By measur-
ing this spectrum at a number of angles the longitudinal and
transverse size of the bunch can be obtained.

In more general cases where the charged particle bunch
possesses still lower symmetry (e.g., a banana shape) then
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39, 4(w) would depend on both 6 and ¢ and complete spec-
trum measurements at different solid angle values would be
required to map out the bunch shape.
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